Noninvasive photoacoustic microscopy of methemoglobin in vivo.
نویسندگان
چکیده
Due to the various causes of methemoglobinemia and its potential to be confused with other diseases, in vivo measurements of methemoglobin have significant applications in the clinic. Using photoacoustic microscopy (PAM), we quantified the average and the distributed percentage of methemoglobin both in vitro and in vivo. Based on the absorption spectra of methemoglobin, oxyhemoglobin, and deoxyhemoglobin, three wavelengths were chosen to differentiate methemoglobin from the others. The methemoglobin concentrations calculated from the photoacoustic signals agreed well with the preset concentrations. Then we imaged the methemoglobin percentage in microtubes that mimicked blood vessels. Average percentages calculated for five samples with different methemoglobin concentrations also agreed well with the preset values. Finally, we demonstrated the ability of PAM to detect methemoglobin in vivo in a mouse ear. Our results show that PAM can quantitatively image methemoglobin distribution in vivo.
منابع مشابه
Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy.
Photoacoustic microscopy (PAM) has been used to obtain high-resolution, noninvasive images of the in vivo mouse brain. In this work, we exploit the high-depth and temporal resolutions of PAM to noninvasively image the blood-oxygenation dynamics of multiple cortex vessels in the mouse brain simultaneously in response to controlled hypoxic and hyperoxic challenges. These results confirm the abili...
متن کاملNoninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy.
In vivo microcirculatory imaging facilitates the fundamental understanding of many major diseases. However, existing techniques generally require invasive procedures or exogenous contrast agents, which perturb the intrinsic physiology of the microcirculation. Here, we report on optical-resolution photoacoustic microscopy (OR-PAM) for noninvasive label-free microcirculatory imaging at cellular l...
متن کاملIn vivo quantitative photoacoustic microscopy of gold nanostar kinetics in mouse organs
We developed a high-resolution photoacoustic microscopy (PAM) system with a near-infrared (NIR) laser to noninvasively monitor the distribution of gold nanostar (GNS) in blood vessels, liver and spleen in mice. Photoacoustic images of organs at deep depths were continuously acquired in vivo every 30 minutes after a single dose of GNS by tail vein injection. The experimental results showed that ...
متن کاملNoninvasive, in vivo imaging of the mouse brain using photoacoustic microscopy.
Noninvasive, high resolution imaging of mouse brain activity is poised to provide clinically translatable insights into human neurological disease progression. Toward noninvasive imaging of brain activity through the hemodynamic response, the dark-field photoacoustic microscopy (PAM) technique was enhanced to image the cortex vasculature of the mouse brain in vivo using endogenous hemoglobin co...
متن کاملOptical-resolution photoacoustic microscopy for in vivo imaging of single capillaries.
Capillaries, the smallest blood vessels, are the distal end of the vasculature where oxygen and nutrients are exchanged between blood and tissue. Hence, noninvasive imaging of capillaries and function in vivo has long been desired as a window to studying fundamental physiology, such as neurovascular coupling. Existing imaging modalities cannot provide the required sensitivity and spatial resolu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 20 3 شماره
صفحات -
تاریخ انتشار 2015